首页> 外文OA文献 >Raman-gain induced loss-compensation in whispering-gallery-microresonators and single-nanoparticle detection with whispering-gallery Raman-microlasers
【2h】

Raman-gain induced loss-compensation in whispering-gallery-microresonators and single-nanoparticle detection with whispering-gallery Raman-microlasers

机译:拉曼增益引起的损耗补偿   耳语 - 微观 - 微谐振器和单纳米粒子检测   耳语画廊拉曼微型激光器

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recently optical whispering-gallery-mode resonators (WGMRs) have emerged aspromising platforms to achieve label-free detection of nanoscale objects and toreach single molecule sensitivity. The ultimate detection performance of WGMRsare limited by energy dissipation in the material they are fabricated from. Upto date, to improve detection limit, either rare-earth ions are doped into theWGMR to compensate losses or plasmonic resonances are exploited for theirsuperior field confinement. Here, we demonstrate, for the first time, enhanceddetection of single-nanoparticle induced mode-splitting in a silica WGMR viaRaman-gain assisted loss-compensation and WGM Raman lasing. Notably, wedetected and counted individual dielectric nanoparticles down to a record lowradius of 10 nm by monitoring a beatnote signal generated when split Ramanlasing lines are heterodyne-mixed at a photodetector. This dopant-free schemeretains the inherited biocompatibility of silica, and could find widespread usefor sensing in biological media. It also opens the possibility of usingintrinsic Raman or parametric gain in other systems, where dissipation hindersthe progress of the field and limits applications.
机译:最近,光学耳语画廊模式谐振器(WGMR)已经成为有前途的平台,可以实现纳米级物体的无标记检测并达到单分子敏感性。 WGMR的最终检测性能受到其制造材料的能量消耗的限制。迄今为止,为了提高检测限,或者将稀土离子掺杂到WGMR中以补偿损失,或者利用等离子体共振进行超强磁场限制。在这里,我们首次展示了通过拉曼增益辅助损耗补偿和WGM拉曼激射技术增强检测二氧化硅WGMR中单纳米颗粒诱导的模式分裂的方法。值得注意的是,我们通过监测分离的拉曼拉辛线在光电探测器中外差混合时产生的节拍信号来检测和计数单个介电纳米颗粒,直至低至10 nm的记录低半径。这种无掺杂方案保留了二氧化硅的遗传生物相容性,并可以在生物介质中广泛地用于传感。它还开辟了在其他系统中使用本征拉曼或参数增益的可能性,在这些系统中,耗散会阻碍磁场的发展并限制应用。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号